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Abstract A statistical approach for the analysis of multi-

environment trials (METs) is presented, in which selection

of best performing lines, best parents, and best combination

of parents can be determined. The genetic effect of a line is

partitioned into additive, dominance and residual non-

additive effects. The dominance effects are estimated

through the incorporation of the dominance relationship

matrix, which is presented under varying levels of

inbreeding. A computationally efficient way of fitting

dominance effects is presented which partitions dominance

effects into between family dominance and within family

dominance line effects. The overall approach is applicable

to inbred lines, hybrid lines and other general population

structures where pedigree information is available.

Introduction

Multi-environment trials (METs) are generally used at the

later stages of crop breeding programs. They are important

in assessing the suitability of lines in different environ-

mental conditions, such as different locations, years or

seasons for traits of interest. METs have two main aims,

the selection of lines with superior performance and the

selection of lines as potential parents for future crosses.

Lines may be selected for specific environments or across a

range of environments.

The selection of best performing lines is undertaken

through well-designed breeding trials conducted across

multiple environments and analyzed appropriately.

Mixed model approaches for analyzing METs are being

used more widely (see Smith et al. 2005 for a recent re-

view). Most of these approaches are based on classical

quantitative genetics which partitions the phenotypic

response into genetic line effects, environment effects,

genetic line by environment interaction effects and within

environment error effects. They differ in the treatment of

the genetic line and environment effects as random or fixed

and in the extent to which they define and explore the

genetic line by environment interaction.

The suitability of lines as parents and the determination

of preferable parental crosses has traditionally been carried

out through specialized mating designs such as the diallel

cross. These designs allow the partitioning of the genetic

line effect into additive and non-additive line effects also
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known as ‘‘general combining ability’’ and ‘‘specific

combining ability’’, respectively (Griffing 1956). The

additive effects or breeding values obtained for each line,

measure the potential of a line as a parent (Falconer and

Mackay 1996). The non-additive effects obtained for each

line are associated with dominance and epistatic effects.

Dominance genetic effects result from the interaction of

alleles at a particular locus, whereas epistatic genetic ef-

fects result from the interactions between alleles at dif-

ferent loci. Specialized mating designs are however, often

carried out in addition to MET analyses, and near or after

the commercial release of lines therefore restricting their

usefulness. These disadvantages often result in the suit-

ability of lines as parents being assessed in the same way as

the selection for best performing lines, that is, by exam-

ining their overall or total genetic effect.

The additive genetic effect is widely used in animal

breeding programs to assess the potential of an animal as a

parent, since it is not simple, nor practicable to replicate

genotypes. The approach involves the incorporation of the

pedigree information of animals into the analysis in the

form of the additive relationship matrix A (Henderson

1976). When fitting non-additive effects in mixed linear

models used to evaluate large pedigrees in animal breeding

applications, a common simplifying is to ignore inbreeding

and thus non-additive effects take the form of dominance

and epistatic effects. Cockerham (1954) made theoretical

developments for non-additive effects including dominance

and epistatic effects under no-inbreeding. Henderson

(1984, Chap. 29) shows how these results are applicable in

practice by fitting a model which includes additive and

non-additive effects.

In plant breeding trials, attempts at incorporating pedi-

gree information into plant breeding trials have initially

focused on special types of populations. Stuber and

Cockerham (1966) give explicit theoretical results of ge-

netic variances and covariances for hybrid relatives. Spe-

cifically, they consider the hybrid individuals produced

from a cross between two separate parent populations. In

Stuber and Cockerham (1966), the additive genetic effect

of the hybrid individual is partitioned into two components,

with each component relating to the additive genetic effect

resulting from one of the parent populations. In addition, a

dominance genetic effect of hybrid individuals is deter-

mined. Stuber and Cockerham (1966) however note that as

a result of the partitioning of the additive genetic effect,

more of the total genetic variance is assigned to the addi-

tive component and less to the dominance component.

Bernardo (1994, 1996) applied these results to hybrid

populations of maize. Lo et al. (1995) present theoretical

developments for obtaining genetic means and covariances

of a population composed of two pure breeds and their

hybrid offspring, including dominance inheritance. Cock-

erham (1983) derives the covariance of relatives for indi-

viduals that are completely inbred, noting five relevant

terms that make up the total genetic variances. These terms

are additive variance, dominance variance, homozygous

dominance variance, the covariance between additive and

homozygous dominance effects and the inbreeding

depression. Edwards and Lamkey (2002) apply this theo-

retical development to a maize population estimating all

five terms.

Despite Cullis et al. (1989) acknowledging that pedigree

information in the form of the additive relationship matrix

can be incorporated into mixed model MET analysis

readily, only recently have examples of this application to

plant breeding programs surfaced. The use of the additive

relationship matrix allows more general population struc-

tures to be considered. Panter and Allen (1995), Durel et al.

(1998), Dutkowski et al. (2002), Davik and Honne (2005)

and Crossa et al. (2006) all estimate additive effects using

the additive relationship matrix. These papers however, fail

to account for non-additive effects. Many authors (van der

Werf and de Boer 1989; Hoeschele and VanRaden 1991;

Lu et al. 1999) have indicated that accounting for non-

additive effects in the genetic line effects might improve

the estimation of additive effects resulting in less biased

prediction. Costa e Silva et al. (2004) make some attempt

at including dominance effects by including a between

family effect (as would be applied in a diallel setting). The

failure to account for non-additive effects in plant breeding

trial settings appears to be mainly due to a lack of relevant

theoretical developments for general population structures

with varying levels of inbreeding. The theoretical devel-

opments that have been made are either for application in

animal breeding programs, where when fitting non-additive

effects in mixed linear models used to evaluate large

pedigrees, a common simplifying is to ignore inbreeding,

or for specialized populations, as discussed. Harris (1964)

and later de Boer and Hoeschele (1993) do present the

generalized genetic covariances between individuals

allowing for varying levels of inbreeding. They give results

for the variance of individuals explicitly in terms of the

coefficients of parentage and inbreeding coefficients in

these papers. However, until recently, theoretical devel-

opments of explicit results for the covariances between

individuals under varying levels of inbreeding were lack-

ing. Verbyla and Oakey (2006) have derived these explicit

results under inbreeding. A copy of this research report is

available from the corresponding author.

Recently, Oakey et al. (2006) presented a mixed model

approach for single site analyses in which both the

selection of potential parents for future breeding programs

and promising commercial lines could be determined

from the analysis of a standard crop breeding trial. The

method involved partitioning the genetic effect of a line
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into additive and non-additive effects. The additive line

effects were so called breeding values and line perfor-

mance was determined by combining both additive and

non-additive effects in an overall or total genetic effect.

This method was shown to be superior to the Standard

analysis (which did not partition the genetic effect), with

the total genetic effect having a lower prediction error

variance on average than that obtained by the Standard

analysis (Oakey et al. 2006).

In this paper, the partitioning of the genetic line effect

used in Oakey et al. (2006) is extended to the analysis of

METs, so that both the total genetic value of lines and the

breeding values of potential parents can be determined.

The approach is an extension to the MET model of Smith

et al. (2001). With the view to analyzing non-inbred crops,

non-additive effects are further partitioned into dominance

and residual non-additive effects. Residual non-additive

effects may include inbreeding depression effects, homo-

zygous dominance effects, the covariance between additive

and dominance effects and epistatic effects. No attempt to

partition these latter terms is made here. In order to fit

dominance effects, the dominance variance and covariance

are derived under varying levels of inbreeding. This

extension is crucial, for example, in the analysis of METs

for partially-inbred hybrid crops such as sugarcane, sor-

ghum and maize where the parents of lines are inbred and

the commercial line themselves are F1 hybrids and for

other populations with generalized structures. Since dom-

inance genetic effects are determined by the parents of an

individual line they can be used in determining whether a

particular combination of parents is beneficial. The inclu-

sion of non-additive residual effects that could account for

enhanced or reduced performance of particular lines en-

sures that an overall or total genetic performance can be

obtained from the same analysis.

The approach presented here is a mixed model form of a

classical quantitative genetics model. It follows a long and

ongoing tradition to attempt to model the gene to pheno-

type relationship (see Cooper and Hammer 2005 for a re-

cent review).

Materials and methods

Motivating experiment

The data considered in this paper were taken from the joint

sugar breeding program of BSES Ltd and the Common-

wealth Scientific Industrial Research Organisation

(CSIRO). A large number of clones were evaluated (and

selected) in 2002 at two sites in South East Queensland in

‘Stage 2’ or clonal assessment trials (CATs). The CATs

involved clones planted in a single 10 m plot, interspersed

with multiple plots of (the same) four commercial lines in a

grid-plot layout. Land availability at the sites governed the

spatial layout and resulted in two contiguous row by col-

umn arrays of plots (subtrials) at the MQN site (site is

synonymous with trial). A selected set of 80 clones from

these CATs was then planted in four ‘Stage 3’ or final

assessment trials (FATs) in 2003. Each FAT was designed

as a latinized row-column design (John et al. 2002) with

two replicates (and included additional plots of 25 com-

mercial lines) using the software CycDesigN (Whitaker

et al. 2006). Again land availability at each site necessi-

tated two contiguous arrays or subtrials. Plots were four

drill rows by 10 m with data recorded from the middle two

drill rows to ameliorate the effect of inter-plot competition

on the data. Hereafter clones are synonymous with lines.

Table 1 presents a summary of information for each site

including the design layout.

The pedigree of all of the lines in the clonal and final

assessment trials and their parents was available resulting

in pedigree information on 2,663 individuals, over several

generations. The data considered here are plant cane

measures of commercial cane sugar (CCS, %). CCS is an

industry formula and estimates the percentage of recover-

able sucrose in the cane on a fresh weight basis (BSES

1984).

Statistical model

Following Smith et al. (2001), an appropriate statistical

model for y(n · 1) the full vector of data for individual plots

is

y ¼ Xsþ Zggþ Zuuþ g ð1Þ

where sðb�1Þ is the vector of fixed parameters and includes

an overall mean performance for each site as well as sub-

trial specific modeling terms (see Gilmour et al. 1997) with

associated design matrix X(n · b), g(mp · 1) = (g1
T,..., gp

T)T is

the vector of random genetic effects of the m lines in each

of p sites, with associated design matrix Zg
(n · mp), u(c · 1) is

the vector of random effects and includes extraneous

environmental variation specific to each subtrial, and

design or randomization based blocking factors (Cullis

et al. 2006), Zu
(n · c) is its associated design matrix and

gðn�1Þ ¼ ðgT
1 ; . . . ; gT

t Þ
T

is the residual vector partitioned

conformably within t subtrials. The residual vector g
ðns�1Þ
s

represents local stationary variation at the sth sub-trial

(s = 1,...,t). It is the sum of two independent vectors, 1
ðns�1Þ
s

representing a spatially dependent mean zero random sta-

tionary process and fðns�1Þ
s a zero mean process represent-

ing measurement error. The measurement error term fs has

variance r2
s Ins

and the spatial dependent term 1s has

variance r2
es
Rðns�nsÞ

s ; where the matrix Rs ¼ ðRcs
� Rrs

Þ;
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represents the kronecker product between auto-regressive

processes of order one (AR1) in the column and row

directions, respectively, for the sth sub-trial. Notice that

n ¼
Pp

r¼1 nr ¼
Pt

s¼1 ns; where nr is the number of obser-

vations in the rth site, and ns is the number of observations

in the sth sub-trial.

It is assumed that g, u and g are pairwise independent

with var (u) = Gu and var ðgÞ is a block diagonal matrix

with t blocks corresponding to subtrials, with block s of the

form Rs ¼ r2
s Ins
þ r2

es
Rs: The structure for genetic line

effects is discussed below.

Thus, the genetic line effects g reflect the genetic vari-

ation, while the fixed s; random u and residual g terms

reflect the design and conduct of the trial, and as such,

provide the underlying structure for non-genetic variation.

Modeling genetic effects

The vector of genetic line effects g, termed total genetic

value, is decomposed into three components: additive,

dominance and residual non-additive genetic effects. Thus

g = a + d + i, where the terms in the sum have obvious

meaning and it is further assumed that these are mutually

independent, zero mean Gaussian random vectors. It then

follows that a sensible model for the variance of g, referred

to here as the Extended model for g is

varðgÞ ¼ Ga � Aþ Gd � Dþ Gi � Im ð2Þ

The additive, dominance and residual non-additive ge-

netic variance matrices across sites are Ga, Gd and Gi,

respectively. These matrices have diagonal elements that

are the genetic variances for the individual sites and off-

diagonal elements that are the genetic covariances be-

tween pairs of sites. The form of these matrices for the

different genetic terms need not be the same. Variance

models for Gc, c = a, d, i, range from a compound

symmetry structure where all sites have the same variance

and all pairs of sites have the same covariance (Patterson

et al. 1977); to a completely unstructured form for p sites

of p(p + 1)/2 parameters with different site variances and

covariances between sites. Cullis et al. (1998) consider a

model for Gc that includes a separate variance for each

site and the same covariance for pairs of sites. Smith

et al. (2001), consider a factor analytic structure for Gc

with up to l factors (l < p), so that Gc ¼ KcK
T
c þWc; with

Kc being a matrix of factor loadings at each of the p sites,

and the matrix W is a diagonal matrix with elements ws

the specific variance for site s.

Notice that the Extended model has the Standard model

as a sub-model. In the Standard model g is not partitioned

so that var (g) = Gi� Im, where Im is a (m · m) identity

matrix. Thus, in the Standard model, an overall random

genetic effect is fitted where lines are assumed indepen-

dent.

The matrix A(m · m) = { Ajk } is the known additive

relationship matrix (Henderson 1976) between lines j and

k, such that

Ajk ¼
1þ Fj; j ¼ k

2fjk; j 6¼ k

�

ð3Þ

where 2fjk is the numerator of the coefficient of relationship

(Wright 1922), fjk is the coefficient of parentage between

lines j and k and Fj is the inbreeding coefficient of line j.

The matrix D(m · m) = {Djk} is the known dominance

relationship matrix between line j who has parents Y and Z

and line k, who has parents U and V, such that

Djk ¼
1� Fj; j ¼ k

ðfYUfZV þ fYV fZUÞð1� FjÞð1� FkÞ; j 6¼ k

�

ð4Þ

where terms are defined as above. The case for j = k was

derived by Harris (1964) and for j „ k the result is derived

in Verbyla and Oakey (2006), however a short summary of

the derivation is provided in Appendix 2.

Table 1 Summary of the

design layout and other details

of the sugar example subtrials

FAT final assessment trial, CAT
clonal assessment trial, CCS
commercial cane sugar
a Total number of clones

planted for each site (across

subtrials)
b Total number of plots for each

site (across subtrials)

Year Site Type Clonesa Mean CCS (%) Subtrial Columns Rows Plotsb

2002 BIN1 CAT 1236 11.37 1 30 46 1380

2002 MQN CAT 1010 14.29 2 16 58 1144

3 8 27

2003 BIN2 FAT 105 13.52 4 14 8 224

5 14 8

2003 FMD FAT 105 16.22 6 16 7 224

7 16 7

2003 ISS FAT 105 13.98 8 14 8 224

9 14 8

2003 MYB FAT 105 13.73 10 16 7 224

11 16 7
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If the equalities AYU = 2fYU and Fj = 0.5AYZ (Henderson

1976; Falconer and Mackay 1996) are noted, then an

alternative formulation of Eq. 4 which allows us to deter-

mine D from the elements of A is

There are several special cases of interest. Firstly, con-

sider completely inbred lines. Thus AYZ = AUV = 2 and

Eq. 5 reduces to Djj = Djk = 0 so that there is no domi-

nance. Cockerham (1954) considers lines that are not

inbred. In this case AYZ = AUV = 0 and Eq. 5 reduces to:

Djk ¼
1; j ¼ k

0:25ðAYUAZV þ AYVAZUÞ j 6¼ k

�

ð6Þ

For lines that are full sibs and have (some) inbreeding,

Eq. 5 reduces to

Djk ¼
1� 0:5AYZ ; j ¼ k

0:25ðAYY AZZ þ A2
YZÞð1� 0:5AYZÞ2 j 6¼ k

�

ð7Þ

while for full-sib lines which are not inbred, Eq. 7 reduces

to

Djk ¼
1; j ¼ k

0:25ðAYY AZZÞ j 6¼ k

�

ð8Þ

Equation 8 was also given by Stuber and Cockerham (1966)

and Cockerham and Weir (1984) but in terms of FY and FZ.

For the experiment presented in this paper, the lines are

hybrid crops so that either AYZ = 0 or 0 £ AYZ < 1. It is

possible that AYZ > 0 due to relationships between the

parents of the lines, so that Djj and Djk are greater than zero.

Fitting the dominance genetic effect d

The inverses of the additive and dominance relationship

matrices are required for the mixed model equations

(Henderson 1950) and therefore for the calculation of

additive and dominance genetic effects. There are several

algorithms (Henderson 1976; Quaas 1976; Meuwissen and

Luo 1992) for the direct calculation of the inverse of the

additive relationship matrix and therefore no obstacles to

fitting this term. However, at present, there is no algorithm

to calculate the inverse of the dominance relationship

matrix directly. This is because the elements of the domi-

nance relationship matrix are functions of the elements of

the additive relationship matrix and it is difficult to see how

the inverse of the dominance relationship matrix can be

calculated directly without first calculating the additive

relationship matrix. Therefore, for large data sets obtaining

the inverse of the dominance relationship matrix (using

conventional rules for inverting matrices) may be a limiting

factor to the fitting of dominance genetic effects.

Hoeschele and VanRaden (1991) noted that the domi-

nance relationship between two individuals is defined by

the relationships between their parents. Individuals from

the same family (i.e. same parents) therefore share the

same dominance relationships. If a pedigree contains many

individuals from the same family, the dominance rela-

tionship between these individuals can be summarized in a

reduced form by considering two components; one relating

to between family effects and the other relating to within

family line effects (Hoeschele and VanRaden 1991). In the

example presented here, the 2,267 lines are from 187

families. Thus, by partitioning d the potential information

required to be input in the form of dominance relationships

between lines can be reduced almost 130-fold from a po-

tential maximum of 2,570,778 data points to a potential

maximum of 19,845 data points. The inverse of the smaller

between family dominance matrix thus can be obtained

using conventional rules for inverting matrices with little

difficultly.

Hoeschele and VanRaden (1991) suggested that the

between family effects could be included in the model and

the within family line effects be obtained by back-solving.

Here we extend their approach by including both the be-

tween family effects and within family line effects in the

model. This means that the total dominance effect is pre-

dictable. We also present the approach under inbreeding.

The vector of dominance effects d(mp · 1) = {djr}, where

djr is the dominance effect of the jth line (j = 1,...,m) in the

rth site (r = 1,...,p), can thus be partitioned (without loss of

information) into two mutually independent vectors: a

vector of dominance effects relating to between family

effects db
(vp · 1) = {dbqr}, where dbqr is the dominance be-

tween family effect for the qth family (with q = 1,2,..., v,

v < m) in the rth site and a vector of dominance effects

relating to within family line effects dw
(mp · 1) = {dwjr},

where dwjr is the within family line effect for the jth line in

the rth site.

A particular line j from family q and site r will have its

dominance effect defined as

djr ¼ dbjr þ dwjr ¼ dbqr þ dwjr

where dbjr is equivalent to the between family effect dbqr,

and dwjr is as defined above. Thus d can be written as

Djk ¼
1� 0:5AYZ ; j ¼ k

0:25ðAYUAZV þ AYVAZUÞð1� 0:5AYZÞð1� 0:5AUVÞ; j 6¼ k

�

ð5Þ
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d ¼ Zbdb þ dw ð9Þ

where Zb is a (mp · vp) matrix relating lines to families

within sites.

The between family dominance effect db has distribution

db ~ N(0,Gd� Db), where D
ðv� vÞ
b ¼ fDbqaqbg is the known

between family dominance relationship matrix for families

qa and qb with parents Y, Z and U, V, respectively. The

dominance within family line effect dw has distribution

dw ~ N(0,Gd� Dw), where Dw
(m · m) = diag{Dwj} is the

known within family line dominance relationship matrix for

individual j. The elements of Db and Dw are now developed.

Db is a symmetric covariance–variance matrix with

diagonal terms which correspond to the between family

variance and the off-diagonal terms which correspond to

covariances between families. Hoeschele and VanRaden

(1991) noted that if j and k are lines in the same family q

with the same parents Y and Z (i.e. they are full sibs), that

covðdbjr; dbkrÞ ¼ covðdbqr; dbqrÞ
covðdbjr; dbkrÞ ¼ varðdbqrÞ

ð10Þ

(Note: here in addition to Hoeschele and VanRaden (1991),

it is assumed that j and k are both from site r for com-

pleteness. However, because of the separable nature of

var(d) the r could be omitted without loss of information.)

Therefore, Eq. 10 indicates that the diagonal terms of Db are

defined by the covariances between full-sibs (Eq. 7). There

are three scenarios depending on whether the parents Y and Z

of family qa are known. Thus the diagonal terms of Db are:

When one parent is known, it is assumed (as in the

derivation of the A matrix by Henderson 1976), that

AZZ = 1. When neither parent is known, in addition it is

assumed that AYY = 1 and AYZ = 0.

The off-diagonal terms of Db are non-zero only when

both parents of both families qa and qb are known and are

given by

Dbqaqb ¼ 0:25ðAYUAZV þAYV AZUÞð1� 0:5AYZÞ
� ð1� 0:5AUVÞ ð12Þ

Hoeschele and VanRaden (1991) showed that the diagonal

terms of Dw are defined as

varðdjrÞ ¼ varðdbjrÞ þ varðdwjrÞ

so that

varðdwjrÞ ¼ varðdjrÞ � varðdbqrÞ ð13Þ

(Note: again in addition to Hoeschele and VanRaden (1991),

it is assumed that j and k are both from site r for complete-

ness. However, because of the separable nature of var (d) the

r could be omitted without loss of information.) Using

Eq. 13, the diagonal terms of Dw, under three scenarios are

When one parent is known, it is assumed (as in the

derivation of the A matrix by Henderson 1976), that

AZZ = 1. When neither parent is known, in addition it is

assumed that AYY = 1 and AYZ = 0. Recall that Dw is a

diagonal matrix, so the off-diagonal terms are zero.

The variance matrix of d can thus be written in terms of

Db and Dw is

varðdÞ ¼ varðZbdb þ dwÞ ¼ ZbDbZT
b þ Dw ¼ D ð15Þ

Implementing this modeling strategy, db and dw are fitted as

separate random terms with Gd constrained to be equal for

both terms. This implies for instance, in the case of a factor

analytic structure for Gd, that the factor loadings and the

specific variances are constrained to be the same for both

random terms. By partitioning the dominance effects d with

symmetric dominance relationship matrix D of size

(m · m) the prediction of d becomes a reduced problem

which will be more computationally feasible. This is be-

cause Db is a symmetric matrix of size (v · v), where v

may be much smaller than m; and Dw is a diagonal matrix

of size (m · m).

The rules for obtaining the elements of Db and Dw under

the scenarios, both parents known, one parent known and

no parents known presented above can be used as the basis

of a computer program to form these matrices. The full or

usual pedigree is needed to form A and a reduced pedigree

Dbqaqa ¼
0:25ðAYY AZZ þ A2

YZÞð1� 0:5AYZÞ2; if both parents are known

0:25AYY ; if one parent, say, Y , is known

0:25; if neither parent is known

8
<

:
ð11Þ

Dwj ¼
ð1� 0:5AYZÞ � 0:25ðAZZAYY þ A2

YZÞð1� 0:5AYZÞ2; if both parents are known

1� 0:25AYY ; if one parent, say, Y , is known

1� 0:25 ¼ 0:75; if neither parent is known

8
<

:
ð14Þ
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based on familial relationships needs to be used to form Db

and Dw.

Estimation and fitting

When fitting the models described above, a hierarchical or

incremental approach must be taken. In the first instance

we fit the Standard model to determine the non-genetic or

environmental parameters appropriate for each subtrial.

Examination of diagnostics includes plotting a sample

variogram for examining spatial covariance structure and

plots of residuals against row(column) number for each

column(row) (see Gilmour et al. 1997 for details) deter-

mines which (if any) spatial terms may be needed. Once an

appropriate non-genetic model is determined, the genetic

effects of the Extended model can be incorporated and

fitted. There will be situations where one or more of the

REML estimates of the additive, dominance and residual

non-additive genetic variances are zero at a particular site;

thus the particular component is not present. This also

means that correlations between the sites with zero esti-

mated variance and other sites cannot be estimated. To

determine if genetic variance is present for each component

at each site, a model which assumes zero correlations be-

tween sites is initially fitted for all three components.

Variance models for Ga, Gd and Gi can then be chosen

which exclude sites with no estimable additive, dominance

or residual non-additive variance, respectively.

For sites with positive variances we aim to fit a factor

analytic structure as these have been shown to work well in

practice (Smith et al. 2005). However, factor analytic

structures can be difficult to fit. For a single factor model,

simpler models should be used as a basis for initial

parameter estimates. It is recommended that the model of

Cullis et al. (1998) be fitted and initial values from this be

used in the factor analytic structure with one factor. In

particular, the environment variance estimates are used for

initial estimates of the specific variances. If the number of

sites is greater than 4, then a factor analytic structure with

two factors can also be attempted with initial estimates

based on the results of the one factor model.

For models which are not nested the goodness of fit of

models is compared using the Akaike Information Crite-

rion (AIC, Aiaike 1974). Models with smaller AIC values

are superior in terms of fit and parsimony (number of

variance parameters). The models discussed here are fitted

using the software ASReml (Gilmour et al. 2006). Esti-

mation of variance parameters is by residual maximum

likelihood (REML, Patterson and Thompson 1971), using

the average information REML algorithm (Gilmour et al.

2006). Given estimates of the variance components

Empirical Best Linear Unbiased Estimates (E-BLUEs) are

obtained for fixed effects and Empirical Best Linear

Unbiased Predictors (E-BLUPs) for random effects. An

example of the ASReml code to fit the final Extended

model is included in Appendix 1. The relationship matrix

or it’s inverse is required. ASReml will calculate the in-

verse of the additive relationship matrix directly if supplied

with the appropriate pedigree file. R code (R Development

Core Team 2005) is available and can be obtained from the

corresponding author to calculate the dominance relation-

ship matrices. This will be incorporated into version 3 of

ASReml (Gilmour et al. 2006).

Analysis

A summary of the models chosen to account for the non-

genetic component of the data is presented in Table 2. The

REML estimates of the spatial correlations (AR1 parame-

ters) for columns and rows, respectively, are from Model

10 (see Table 3). All of the models had these same envi-

ronmental or non-genetic terms fitted. Blocking terms fitted

but not shown in this table included a subtrial effect and a

site by replicate effect (see Appendix 1 for detail).

The genetic effects are summarized in Table 3, (many of

the abbreviations for variance structure are consistent with

ASReml syntax). Specifically, for each multi-environment

analyses the structure of the site genetic variance matrix Gc

for each genetic component c = a, d, i is shown. Models 2

and 3 are equivalent to fitting a separate analysis at each site

because they assume a separate variance for each site and no

covariance between sites. Model 2 corresponds to the Ped-

igree model of Oakey et al. (2006) and partitions the genetic

line effect into an additive and a general non-additive ge-

netic effect. Model 3 further partitions the non-additive

component into dominance and residual non-additive

components. The Extended model for g is more appropriate

here because the clones are F1 hybrids in contrast to the

wheat example in Oakey et al. (2006), where lines were

inbred and (assumed) homozygous. Thus the non-additive

component can and should be partitioned. The remaining

models fitted are MET analyses. Model 1 corresponds to a

form of the Standard model such as that fitted by Smith et al.

(2001) where g is not partitioned. The non-genetic terms

fitted at each site (Table 2) are determined from this model

and then used when fitting further models. Comparing the

AIC of Models 1–3, both the single site analyses which

partition the genetic line effect into components provide a

better fit than the Standard MET analysis (Table 3).

Model 4 (Table 3) provides only an additive genetic

component (Crossa et al. 2006) and is referred to here as

the Additive model. Model 5 is the multi-environment

extension of the Pedigree model of Oakey et al. (2006).

Model 5 has a much lower AIC and is therefore a better fit

than Model 4. Models 4 and 5 have been fitted for com-
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parison purposes only and are not recommended as the

models of choice for F1-hybrid data. Model 5 is however

appropriate if the data consist solely of fully inbred lines

where the dominance component is assumed to be zero.

Models 6–10 are all MET analyses which use the Extended

model for the genetic line effect, but have different struc-

tures for the site genetic variance matrix Ga, Gd and Gi for

each of the genetic components a, d and i, respectively.

Models 6 and 7 are the poorest performing Extended MET

models. Model 6 is the Extended model of Patterson et al.

(1977) and Model 7 is the Extended model of Cullis et al.

(1998). All of the Extended MET models (excluding Model

6) are superior to Model 4 which fits only additive effects.

As discussed previously, the models (Table 3) are fitted in

a hierarchial order so that the choice of models fitted fur-

ther down the table depend on the results of the previous

models. For example, Models 7 through 10 have structures

for Gd and Gi that are fitted at a reduced set of sites, be-

cause having examined Model 3, the REML estimates of

some of the site variances of Gd and Gi converged to zero.

In particular, for Gd, two site variances (MQN and MYB)

converged to zero and for Gi, three site variances (BIN2,

FMD and ISS) converged to zero.

On comparing the AIC of the models fitted Models 8, 9

and 10 are the best performing models with little difference

between Models 9 and 10 (Table 3). However, Model 10

has the lowest AIC and therefore it is chosen as the most

appropriate and final model. The results of the final model

are now examined. The REML estimates of the additive,

dominance and residual non-additive genetic variance

matrices for sites are summarized (Table 4).

The full genetic variance involves not only the Ga, Gd

and Gi, but also A and D. The REML estimates of the

average variance of the additive, dominance and residual

non-additive line effects of the final model is shown

(Table 5). These are REML estimates of the diagonal

elements of Ga, Gd and Gi (Table 4), with Ga and Gd being

multiplied by the average of the diagonal elements of the

A and D, respectively.

Table 2 Non-genetic terms (excluding blocking terms, blocking

terms fitted include subtrial and site by replicate) used in the MET

analysis of the sugar example

Site Subtrial Random Fixed aColumn

AR1

aRow

AR1

BIN1 1 Column,

row

0.09 0.15

MQN 2 0.26 0.22

3 Column 0.17 0.10

BIN2 4 lin(row),

lin(column)

0.59 0.52

5 lin(row) 0.06 0

FMD 6 0.36 0.21

7 0.0 0.13

ISS 8 0 0.03

9 0 0.13

MYB 10 0 0.33

11 Row 0 0.02

a Column and row correlations presented were from the final model

(Model 10, Table 3)

Table 3 Summary of models fitted showing the structure of the site genetic variance matrix for each of the genetic components

Model Structure of site genetic variance matrix qa AICb

Ga Gd Gi

1 – – XFA2 59 3178.94

2 DIAG – DIAG 53 3126.10

3 DIAG DIAG (1, 3, 4, 5) DIAG (1, 2, 6) 54 3124.10

4 XFA1 – – 53 3057.64

5 XFA1 – XFA1 65 3028.62

6 CS CS CS 47 3076.80

7 DIAG/CS DIAG/CS (1, 3, 4, 5) DIAG/CS (1, 2, 6) 57 3051.82

8 XFA1 DIAG/CS (1, 3, 4, 5) DIAG/CS (1, 2, 6) 62 1130.56

9 XFA1 XFA1 (1, 3, 4, 5) XFA1 (1, 2, 6) 67 0.42

10c XFA2 XFA1 (1, 3, 4, 5) XFA1 (1, 2, 6) 72 0.00

a q number of parameters fitted
b AIC are relative the Model 10, so that positive values indicate the AIC is higher than Model 10
c Final model

Key: CS same site variance, same covariance between sites (Patterson 1977); DIAG different site variance, no covariance between sites,

equivalent to fitting a single site analysis; DIAG/CS different site variance, same covariance between sites (Cullis et al. 1998); XFAl factor

analytic with l factors (Smith et al. 2001); (sites) subset of sites fitted (note: if not specified all sites fitted); AIC Akaike Information Criteria

(Akaike 1974)
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At five sites, the non-additive component of variance

was composed of either dominance or residual non-addi-

tive variance. At only one site was both dominance and

residual non-additive variance estimable. If selection was

solely on the basis of CCS, then it may be expected that the

genetic variance in the FATs would be less than that ob-

served in the CATs. However, selection to progress clones

from the FATs to the CATs was based on Net Merit Grade

which is only weakly associated with CCS. For the clonal

trials (Site BIN1 and MQN) in particular, the non-additive

variance comprised a greater proportion of the total vari-

ance than at the other sites. This would suggest that the

FATs are the more appropriate trials to select the best

parents from as these have a much higher proportion of

estimated additive genetic variation than the CATs. Indeed,

this is the current practice in BSES-CSIRO breeding pro-

grams.

To complete the view of the genetic models the ge-

netic correlations were examined (Table 4). Firstly, the

genetic variance components differ between sites for all

types of genetic effects. The variance for sites differ in

their relative sizes across components (additive, domi-

nance and residual non-additive). For the additive com-

ponent, a strong positive estimated correlation exists

between five of the six sites (Table 4). FMD was the

exception and shows reduced correlations with all other

sites except MYB. For the dominance component, a

strong positive estimated correlation exists between three

of the four sites; again FMD was the exception showing

reduced correlations. For the residual non-additive com-

ponent, the correlation between MYB and the other sites

is negative. In summary, where genetic variation existed

at the additive, dominance and residual non-additive

levels, the site FMD appears to be different while the

other sites tend to perform similarly. This site appeared

to have a much lower total genetic variance (var(g),

Table 5) than other sites.

The main aim of this analysis was to provide line

selection. Predictions of genetic line effects for individual

sites can be used to form an appropriately weighted

selection index for each of the genetic components. Cooper

and Podlich (1999) and Podlich et al. (1999) show through

computer simulation that weighted selection strategies

perform as well or better than the traditional unweighted

strategies. Particularly, performance of weighted strategies

is better when only a few sites are sampled in a MET or

when there is a lack of genetic correlation between sites.

Table 4 REML estimate of the

components of the additive,

dominance and residual non-

additive genetic variance

matricesa for sites of the final

model (Model 10, Table 3)

a These matrices are symmetric

therefore only the upper triangle

is shown the diagonal elements

of these matrices are variance

components and the off-

diagonal elements are

correlations between sites

Ga BIN1 MQN BIN2 FMD ISS MYB

BIN1 0.33 0.89 0.95 –0.05 0.73 0.65

MQN 0.52 0.89 0.15 0.72 0.72

BIN2 2.38 0.21 0.79 0.81

FMD 0.46 0.34 0.73

ISS 0.94 0.76

MYB 1.45

Gd BIN1 BIN2 FMD ISS

BIN1 0.67 0.74 0.44 1.00

BIN2 0.94 0.33 0.74

FMD 0.24 0.44

ISS 0.47

Gi BIN1 MQN MYB

BIN1 0.84 0.24 –0.19

MQN 0.51 –0.77

MYB 0.19

Table 5 Summary of the REML estimate of the percent average

variancea of the each of genetic components of the final model (Model

10, Table 3)

Site Type %var(a) %var(d) %var(i) var(g)

BIN1 CAT 19.3 34.5 46.2 1.810

MQN CAT 52.3 0 47.7 1.060

BIN2 FAT 74.3 25.7 0 3.407

FMD FAT 68.7 31.3 0 0.711

ISS FAT 69.3 30.7 0 1.442

MYB FAT 89.1 0 10.9 1.725

FAT final assessment trial, CAT clonal assessment trial
a These are REML estimates of the diagonal elements of Ga, Gd and

Gi, shown in Table 4, with Ga and Gd being multiplied by the average

of the diagonal elements of A and D, respectively
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The weights may be chosen in a number of ways. Cooper

et al. (1996) suggest giving bigger weights to sites that are

more representative of target sites and Kelly et al. (2007)

consider merit in equal weights across all sites. Let ws be

the weight for site s and ~as; ~dsð¼ ~dbs þ ~dwsÞ and ~is be the

vectors of genetic line E-BLUPs for the additive, domi-

nance and residual non-additive effects at site s, respec-

tively. The selection index Ma for additive genetic line

effects is

Ma ¼ w1~a1 þ � � � þ w6~a6;

and the selection index Md for dominance genetic line

effects is

Md ¼ w1
~d1 þ � � � þ w6

~d6;

For total genetic line effects under the Extended model,the

selection index Mg for g is

Mg ¼ w1ð~a1 þ ~d1 þ~i1Þ þ � � � þ w6ð~a6 þ ~d6 þ~i6Þ

As the selection of FAT lines from the CATs has taken

place, the Figs. 1, 2 and 3 show only those lines in the

FATs. The six sites were given equal weights in each

selection index.

There was little evidence of a relationship between the

predicted additive selection index and the (overall) pre-

dicted dominance selection index of the lines (Fig. 1). This

implied that lines with the highest additive selection indi-

ces did not necessarily have the highest dominance selec-

tion indices. So in the selection of lines, breeders must

trade off between these two values.

A relatively high correlation (0.92) between the pre-

dicted selection indices for the total genetic effects of the

Standard model (Model 1, Table 3) and the final model

(Model 10, Table 3) was apparent (Fig. 2). However, in

comparison to the final model the Standard model gen-

erally under-estimates the total selection indices values.

There were also important differences in the ranking of

some of the lines between the two models. For example,

the top ranking line under the Standard model is ranked

5th under the final model and the top ranking line under

the final model was ranked 12th under the Standard

model. In addition, when we consider the ranking of the

top 20 lines, 4 of the selections are different under the

two models.

A positive correlation (0.87) was found between the

predicted total genetic selection index of the Standard

model (Model 1, Table 3) and the additive genetic pre-

dicted selection index of the final model (Fig. 3). How-

ever, again, there were important differences in the

ranking of some of the lines between the two models. For

example, the top ranking line under the Standard model is

ranked 5th under the final model and the top ranking line

under the final model was ranked 6th under the Standard

model. In addition, when we consider the ranking of the

top 20 lines, 6 of the selections are different under the

two models.
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Fig. 1 The predicted additive selection index (breeding value index)

plotted against the predicted dominance selection index of CCS for

the final model (Model 10, Table 3)
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Fig. 2 The predicted total selection index of the Standard model

(Model 1, Table 3) plotted against the predicted total selection index

of CCS for the final model (Model 10, Table 3)
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Discussion

This paper develops a statistical approach that can be used

in crop breeding trials with pedigree information and rep-

lication of lines. It involves fitting a model that predicts

additive and non-additive (dominance and residual non-

additive) genetic effects of test lines, simultaneously

models spatial variation, and allows for heterogeneity of

environmental variance and correlations between environ-

ments to be accommodated. It offers advantages over

current approaches in that it enables the selection of the

best performing line for commercial release, the selection

of best parents and best combinations of parents for further

crosses in a single analysis and from standard crop

breeding trials.

The additive line effects of this model are estimated

breeding values and as such are the preferable means of

determining potential parents for breeding programs. The

dominance line effects give an indication of how well the

genes from an individual’s parents combined. The resid-

ual non-additive line effects may include inbreeding

depression effects, homozygous dominance effects, the

covariance between additive and dominance effects and

epistatic effects which could account for enhanced or

reduced performance of a particular line. The overall or

total genetic value of a line is obtained from the sum of

additive and non-additive effects and is used to determine

the commercial worth of a line, as it is the overall

performance and therefore overall genetic value that is

important.

In trials with only completely inbred lines (eg. wheat

and barley) the approach presented in this paper is still

applicable although somewhat simplified. Completely

inbred lines are assumed homozygous due to inbreeding

and therefore the dominance effect of a line is assumed to

be zero. As a result the non-additive effects consist only of

epistatic effects. This is in fact a multi-environment

extension of the ‘‘Pedigree’’ model seen in Oakey et al.

(2006) and was fitted here as an illustration. Recently,

including the pedigree information in the form of the

additive relationship matrix has been used to predict

additive effects or breeding values in plants (Panter and

Allen 1995; Durel et al. 1998; Dutkowski et al. 2002;

Davik and Honne 2005; Crossa et al. 2006). However, all

of these papers fail to account for non-additive effects.

Many authors (van der Werf and de Boer 1989; Hoeschele

and VanRaden 1991; Lu et al. 1999) have indicated that

accounting for non-additive effects might improve the

estimation of additive effects. For this example, it was

shown that almost all of the Extended MET models fitted

which included non-additive effects were superior to the

model which excluded non-additive effects. Therefore,

from these results, we suggest that in data sets with com-

pletely inbred lines, it will be important to estimate the

non-additive effect in the form of a Pedigree model ex-

tended for METs. In the case of data sets with F1-hybrid

lines the partitioning of the non-additive effect into dom-

inance and residual non-additive effects should be equally

important. In animals and outcrossing species such as trees,

additive and dominance effects could be obtained using

methods given here if a well-structured half-sib design was

available.

The hybrid example explored here is sugarcane.

Sugarcane is a polyploid, showing more than two copies

of the basic set of chromosomes having been derived

from interspecific hybridization. It also exhibits aneu-

ploidy, where the chromosome number of a particular

individual commonly varies between 100 and 130

chromosomes (Jannoo et al. 2004). A recent study by

Jannoo et al. (2004) has shown that pairing in sugarcane

at meiosis is predominately bivalent (in pairs), with

some non-preferential pairing. The same study shows

however that sugarcane shows a combination of disomic

and polysomic inheritance. The theoretical developments

presented here are derived for disomic inheritance.

Therefore, for this specific data set, results from this

method will be approximate. Thus, this data set is not an

ideal example, but it does provide a practical illustration

of the general method presented. Any interactions that

are present between chromosomal sets are allowed for by

including the non-additive residual component. Given

advances in molecular technology, sugarcane and other

Standard model: Total Selection Index

F
in

al
 m

od
el

: A
dd

iti
ve

 S
el

ec
tio

n 
In

de
x

−
1

0
1

−1 0 1

Fig. 3 The predicted total selection index of the Standard model

(Model 1, Table 3) plotted against the predicted additive genetic

effects (breeding values) of CCS for the final model (Model 10,

Table 3)
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polyploids present a good advocate for developing an A

matrix and subsequently a D matrix from information on

the molecular markers of individual lines. This would

perhaps provide a more accurate indication of the rela-

tionship between individuals and their parents rather

than using relationships based only on pedigree infor-

mation.

Hoeschele and Van Raden (1991) suggested that a

computationally feasible way of including dominance

effects under no inbreeding is by fitting sire by dam

subclass effects (or between family effects) and back

solving for the within subclass effects (or within family

line effects). The method presented here extends their

approach in two ways. Firstly, results are presented under

varying levels of inbreeding and, secondly, the within

family line effects are included in the model (with the

appropriate constraints). This means that by partitioning

the dominance effects into the two terms both of which

are included in the model we obtain a computationally

more feasible approach that is equivalent to fitting the

complete dominance effect.

It should be noted however, that fitting the dominance

relationship matrix by partitioning it into two compo-

nents as proposed still requires the two dominance

relationship matrices to ultimately be inverted, as it is

the inverses that are required in the mixed model

equations (Henderson 1950). For large data sets, with

few full-sib relationships, the ability to invert the be-

tween family dominance matrix may still be a limiting

factor to using this method as the between family

dominance matrix may not be much smaller than the full

dominance matrix. For the within family line dominance

matrix, the size of this matrix should not be an issue for

inversion, even for large data sets since this is a diagonal

matrix.

Thus in conclusion, although the model presented is an

approximation of the ‘true’ genetic model, we believe it is

a good first practical step and an improvement on current

practices.
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Appendix 1: ASReml code for fitting the final model

The following is the code for the .as ASReml file used for

fitting the final model.
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The data.ped is a file containing the pedigree file, from

which ASReml calculates the inverse of the relationship

matrix A–1. ASReml requires a file which has three col-

umns: clone parent1 parent2. The file must be ordered with

founding individuals first. DB.grm and DW.grm are the

dominance between family and dominance within family

line matrices respectively. DW.grm is a scale identity. The

.grm indicates that these are not inverse matrices (ie.

DB.grm is Db not Db
–1) and ASReml will invert them. (A

.giv ending would indicate that these were inverse matri-

ces). ASReml requires just the lower triangle of this

matrices. It is important to ensure that the numbering of

lines in the corresponding factors familyB and familyW

corresponds directly to the ordering of rows and columns in

the .grm file. Row one and column one of the Db matrix

contain the dominance between relationships of family 1,

and this should correspondingly be labeled as 1 in the

familyB factor, similarly for the familyW.

The data.asd is a text file containing the data.

The additive genetic effect with a factor analytic struc-

ture of order two for Ga is fitted by including the term

xfa(Site,2).Clone in the random part of the model specifi-

cation. A factor analytic structure of order one for Gd at

four sites is fitted by including the term xfa(dSite,1).giv

(familyB,1) and xfa(dSite,1).giv(familyW,2), dSite has four

levels instead of six (the other sites are set to ‘NA’) and so

ensures that a dominance effect is just fitted at these sites

and the .giv(,) indicates which .grm file to associate with

each effect. In addition, these two dominance genetic ef-

fects must be constrained to be equal. This is achieved

most simply by the !=%ABCDEFG command in the G-

structure line of both these terms. The residual non-additive

genetic effect has a factor analytic structure of order one

for Gi at three sites.

Appendix 2: Dominance covariance under varying

levels of inbreeding

Harris (1964) derives the covariance between individuals j

and k, with parents Y, Z and U, V, respectively, based on

whether the alleles of j and k are identical by descent

(IBD). He states the coefficient of the dominance covari-

ance between individuals j and k with parents Y, Z and U,

V, respectively, to be given by the probability tjk. We now

define tjk as in Harris (1964) and then derive this term

explicitly below.

tjk ¼ pðajY � akU
6� ajZ � akV

Þ þ pðajY � akV
6� ajZ � akU

Þ
¼ pðajY 6� ajZ ÞpðakU

6� akV
Þ½pðajY � akU

ÞpðajZ � akV
Þ

þ pðajY � akV
ÞpðajZ � akU

Þ�
¼ ð1� FjÞð1� FkÞðfYUfZV þ fYV fZUÞ ð16Þ

where ajY represents the allele of j derived from parent Y, ”
indicates identity by descent and the following equiva-

lences given by Cockerham and Weir (1984) are used.

pðajY � ajZ Þ ¼ Fj

pðajY 6� ajZ Þ ¼ 1� Fj

pðajY � akU
Þ ¼ fYU

pðajY 6� akU
Þ ¼ 1� fYU
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